
 1

SAS® in the Office. IT Works.
Peter Eberhardt M.A., Fernwood Consulting Group, Inc

ABSTRACT

The Microsoft Office suite is ubiquitous in most large
organisations these days. And regardless of how and
where the enterprise intelligence computing goes on, the
suite of Office products needs to be able integrate with this
enterprise intelligence. With the release of SAS Integration
Technologies the unrivalled analytical and business
intelligence capabilities of SAS can now be delivered to
the desktop using the Microsoft Office suite. This paper
will introduce some components of SAS Integration
Technologies, and then show how to use these
components to integrate SAS into Microsoft Office
Products without the need for SAS on the user's computer.
This paper is geared for any SAS programmer who has a
good grasp of VBA.

There are few SAS programmers and/or analysts who
have not heard the refrain ‘Can I have that in an Excel
spreadsheet?’. And, once provided, the additional and
inevitable refrain ‘Can you run it again with this one
change?’. If you have SAS/Access for PC File Formats,
generating the spreadsheets is not too big an issue,
assuming you have time to make the change and run the
programme. And if you do not have SAS/Access for PC
File formats, then you have yet another layer of
conversion, additional time, and of course the window of
opportunity for errors to creep in. And if the results are
required in a MS Word compatible format or a MS Access
compatible format there are yet other problem you may
face. Many people turned to Dynamic Data Exchange
(DDE) to try to alleviate these problems. In this paper I will
introduce a more robust set of tools aimed at sharing data
between SAS and non-SAS applications – SAS Integration
Technologies.

I AM IN THE OFFICE BUT SAS IS OUT THERE

SAS is running out on the network (say on a Windows
2000 server) and you have to provide a user with a table
to be included into an Excel spreadsheet. And, SAS in not
installed on the user’s computer. What to do? One solution
is run SAS on the remote computer, create the output,
copy it to a location accessible to the user, then notify the
user it is ready. The final output generation is simple
thanks to ODS (Listing 1); Excel will gladly accept the CSV
file created through ODS. Although Word does not like this
format, you can appease your Word users with one simple
change (Listing 2). Word will gladly accept the RTF file
created through ODS. And if you do not know whether it
will be Word or Excel that will use the data, you can
always create an HTML output (Listing 3). Finally, MS
Access and Powerpoint can also accept HTML output. So
life is not that bad. Until you get asked for changes. Never
happens, right.

SAS IS IN THE OFFICE WITH ME

New in SAS v8, Integration Technologies is a set of tools
that allow you to access the power of the SAS system
from a variety of programming environments – Java,
Visual Basic etc.. In this paper, we will be looking at using
some Windows desktop tools and components to access
SAS. In most of the examples we will be using Excel VBA
as the client programming language, Microsoft’s Active
Data Objects (ADO) as the data access component, and
the SAS Integrated Object Model (IOM) to open SAS to
the Excel client. Some of the examples will show how to
perform the same task from different MS Office products.
Finally we will look deeper into the MS Office environment
and how to put links to SAS right onto the client (e.g.
Excel) menu.

First, let us briefly examine the SAS Integrated Object
Model (for a complete description of SAS Integration
Technologies, and the IOM, refer to the SAS web site
support.sas.com/rnd/itech)
. Figure 1 depicts the IOM Hierarchy; in this paper we will
focus on the Workspace and the ADO/OLE DB
components.

Figure 1.
IOM Hierarchy

The root of the IOM hierarchy is the SAS Workspace
object; when instantiated by the Workspace Manager
within a client programme, the SAS Workspace object can
be thought of as a SAS session. Virtually all of the
functionality you would have in a batch SAS session is
available to you through the workspace object. The
Workspace Manager creates the SAS Workspace objects
on an IOM Server. In the Windows environment there are
three ways the Workspace Manager can create a SAS
Workspace:

Through local COM if the SAS Server runs on the same
machine as the client
Through DCOM if the SAS Server runs on another
machine that supports DCOM

 2

Through the IOM Bridge for COM if the SAS Server runs
on another machine that does not support COM/DCOM
functionality (Unix/OS390)

Regardless of how the SAS Workspace is created (COM,
DCOM, IOM Bridge), it still offers the same set of services
– DataService, FileService, LanguageService, and
Utilities.

The LanguageService component provides methods to
submit SAS code to the IOM Server as well as retrieve log
and list outputs. If you take advantage of the SAS Output
Delivery System (ODS) you can use the
ResultsPackageService to retrieve collected items.
While the programme is executing, the LanguageService
raises events (e.g. step begin, step end), which will allow
you to monitor the progress.

The DataService and FileService provide methods to
access SAS libraries through librefs or host system files
through filerefs. The full range of library and file
manipulation tools is available through these services.
Microsoft’s ADO/OLE DB data model is used to share data
between the client application and the SAS IOM server.
The ActiveX Data Object (ADO) model is shown in Figure
2.

MICROSOFT ADO

In order to share data between SAS and Excel we will
need to understand a bit about ADO. For the purposes of
this paper there are two objects of interest – the
Connection object and the Recordset object.

The Connection object provides properties to define the
source of the data, and methods to manage the link
between the client to the datasource. The Recordset
object uses the Connection object to return data to the
client. The Fields collection of the Recordset object
provides data about the contents of the recordset.

DO YOU HAVE ALL OF YOUR TOOLS?

In order to follow the examples in this paper, you will have
to have SAS v8.x installed; as part of the installation
procedure be sure the Integration Technologies
components are installed. Microsoft Data Access
Components (MDAC) v2.1 or higher should also be
installed; normally this will be installed along with SAS
Integration Technologies. The examples that follow were
developed under Windows 2000 Professional sp2 using
SAS v8.2. The office products are all from Office 2000.

In order to use the SAS IOM within Excel we will need to
make sure that Excel has the proper references to the
objects. To do this, start Excel and follow these steps

Figure 2.
ADO Hierarchy

From an empty spreadsheet open the Visual Basic Editor
(Tools…Macro…Visual Basic Editor)
create a new module (Insert…Module)
add the references to the SAS IOM and the SAS
Workspace manager (Tools…References – in the
dialogue box, scroll down and select the SAS objects)
add the references to the Microsoft ActiveX Data Objects
(Tools…References – in the dialogue box scroll down to
Microsoft ActiveX Data Objects and select the highest
version available)

A similar process will need to be followed for each of the
other Office products.

FIRST DAY AT THE OFFICE

Let’s start with a simple connection and retrieval of data; in
the first case we will retrieve the contents of the table
sasuser.shoes. To keep the demonstration as simple as
possible and to highlight the IOM components the Excel
worksheet will not use common spreadsheet components
such as forms and buttons. The first example will simply
return the contents of sasuser.shoes and display the
contents in the Excel immediate window. Let us examine
each of the lines of code here (see Listing 1). NOTE:
watch carefully for code that spans multiple lines. Although
I have tried to catch all such spans and add the ‘line to be

 3

continued’ character _ (the underscore), the transfer from
Excel to the word processor may have led to word wrap,
and consequently code that will not compile.

First, whenever using VBA modules, always set
Option Explicit. This option requires you to declare all
variables used. If this option is not set errors in the form of
misspelled variables can easily creep into your
programme. The next three declarations:

Dim swsSAS As SAS.Workspace
Dim rsSAS As New ADODB.Recordset
Dim swmWM As New _
SASWorkspaceManager.WorkspaceManager

declare these objects to be global to the module. The use
of the New keyword indicates that the objects should be
created when the programme starts. These objects were
declared global to the module so they could be available
to any function or subroutine within the module. The
subroutine Test does all of the work in this module.

The command:

Set swsSAS = _
swmWM.Workspaces.CreateWorkspaceByServer("",_
VisibilityProcess, Nothing, "", "", xmlInfo)

creates a SAS workspace (swsSAS) on the local machine.
The third parameter (the VBA keyword Nothing) indicates
the SAS server is on the local machine. If the SAS server
were to be located on another machine then an
appropriate server definition would have to be passed

The command (which should be on one line):

cnnIOM.Open "Provider=sas.iomprovider.1; SAS
Workspace ID=" & swsSAS.UniqueIdentifier

opens the data connection between the SAS IOM server
and the Excel client. The “Provider= sas.iomprovider.1”
option indicates the particular SAS dataprovider we will be
using (there are three available providers). The “SAS
Workspace ID= & swsSAS.UniqueIdentifier” option tells
the connection which workspace it is dealing with.

The command:

rsSAS.Open "sashelp.shoes", cnnIOM, adOpenDynamic,_
adLockPessimistic, ADODB.adCmdTableDirect

opens the SAS table sashelp.shoes for update. The
connection object, cnnIOM, identifies where the data
reside (a local SAS workspace), the adOpenDynamic
keyword indicates the data are updateable.

A recordset can be positioned in one of three locations,
before the first record or the beginning of the file (BOF),
after the last record or the end of the file (EOF), or on an
active record; if there are no records in the recordset you
cannot move to an active record. A common way to test
for an empty dataset is to see if both the BOF and EOF
properties are true; if both properties are true, there are no
records in the recordset. The statement

If Not (rsSAS.BOF And rsSAS.EOF) Then

then checks if there are any records in the recordset,
proceeding only if there are records. There are a number
of methods used to navigate a recordset; some of the
common ones are:

MoveFirst - move to the first record
MoveLast - move to the last record
MoveNext – move to the next record
MovePrevious – move to the previous record

Within the conditional If statement, we loop through all of
the records in the recordset, listing the contents in the
VBA immediate window using the Debug.Print method.

rsSAS.MoveFirst
Do While Not rsSAS.EOF
 Debug.Print rsSAS!region, rsSAS!product,_
rsSAS!subsidiary, rsSAS!stores, rsSAS!sales,_
rsSAS!inventory, rsSAS!returns
 rsSAS.MoveNext
Loop

After looping through all of the records, we close all of the
objects we had opened and explicitly destroy them by
setting them to Nothing. If objects are not properly closed
and destroyed, the memory they occupied is not freed
(memory leak) often resulting in your programme slowing
drastically and possibly crashing altogether.

WHAT FIELD ARE YOU IN?

The example in Listing 1 allowed us to display the
contents of the table sasuser.shoes; however, we had to
explicitly identify all of the fields in the recordset. In the
next example (Listing 2) we will see how to identify the
fields in each record. The following code is the segment
which lists the fields:

For Each fld In rsSAS.Fields
 Debug.Print fld.Name, fld.Type
Next

If you recall from the ADO hierarchy model (Figure 2) the
recordset object has a Fields collection; this code is
simply stepping through all of the fields in the collection.
The For Each …. Next construct is a common method to
iterate over a collection.

LETS BE OBJECTIVE.

How do you find the options and properties for these
objects we are using? If manuals were regularly
distributed with software, you could read the manual. Now
manuals are replaced with on-line help. Unfortunately,
navigating the help files is not always easy or productive.
Fortunately there is a way to get the methods and
properties of the objects – the VBA object browser. Within
the VBA editor select View… Object Browser; the shortcut
key id F2 (Figure 3).

 4

Figure 3
The Object Browser

The example in Figure 3 shows the members (properties
and methods) of the recordset object.

LET’S EXCELERATE THE PROCESS

Now that we have been able to start SAS from our Excel
spreadsheet, let’s actually populate a worksheet (Listing
3). This example builds upon the previous one. We will
iterate over the Fields collection to put out column
headers (fld.Name). In addition we will check for character
fields (fld.Type = adWChar) and set the column widths to
be 2 characters wider than the actual (defined) width
(fld.DefinedSize + 2). We will also bold the titles and set
the cell border to a bottom underline. After displaying the
column headers, we then process every record in the
recordset as before; within each record we iterate over the
Fields collection and populate the cells with the field value
(fld.Value). After populating the worksheet, we move to
the cell A2.

SUBMIT

Ok, we can read sasuser.shoes. My boss will really find
those data useful!! Ok, maybe he will, maybe she won’t.
But a DATA Step, that we know would be useful. In the
next example (Listing 4) we use the LanguageService to
submit a simple data step and return the results. As with
the first example, the output will be displayed in the VBA
Immediate window. The new piece to the puzzle is the
line (the quoted part should all be on one line):

swsSAS.LanguageService.Submit _
"data a; do customer=1 to 0;quantity=customer*customer;
pizza='Pepperoni';output;end;run;"

This will create a dataset with 10 records and 3 variables.
And now with the ability to submit SAS code we can add
some real v8 power.

HERE’S WHERE WE KEEP THE DATA.

In order to access some real data we need to use the SAS
Workspace DataService to assign a libref to an existing
SAS Library (Listing 5). In this example we assign the
libref CARD to the directory D:\Cardiac using the
command

Set libref =
swsSAS.DataService.AssignLibref("card",_"","d:\cardiac",
"")

Then, in the SAS code in the submit command, we can
reference datasets in the specific libref CARD.

BEFORE YOU GO HOME

These examples have been kept simple to highlight a few
of the aspects of SAS Integration Technologies. By no
means are they exhaustive of the power of SAS
Integration Technologies. However, they should start you
on your way. To see how to link SAS and Integration
Technologies into Excel and Access menu items see the
paper by Darren Key and David Shamlin from SUGI 27.

To get started you should have SAS with Integration
Technologies installed on your desktop. Once you have
the programmes working using a local SAS Server it is a
matter of changing only a few options and you are ready
to run the same programmes against remote SAS servers.
To deploy your applications you need only the SAS Client
components and the client application (e.g. Excel) on the
desktop and SAS Integration Technologies components
on the remote SAS Server.

SAS, SAS Integration Technologies, and SAS Alliance
Partner are registered trademarks of SAS Institute Inc. in
the USA and other countries
Other brand and product names are registered trademarks
or trademarks of their respective companies.

REFERENCES

For a complete overview of SAS Integration Technologies
see support.sas.com/rnd/itech

Green, John (1999) Excel 2000 VBA Programmer’s
Reference
Wrox Press, Birmingham

Jennings, Roger (1999) Database Developer’s Guide with
Visual Basic® 6
SAMS, Indianapolis IN

Key, Darren and David Shamlin “Using SAS® Data To
Drive Microsoft Office”
Proceedings of theTwenty-Seventh Annual SAS Users
Group International Conference.

 5

About the Author

Peter is SAS Certified Professional V8, SAS Certified
Professional V6, and SAS Certified Professional - Data
Management V6. In addition his company, Fernwood
Consulting Group Inc. is a SAS Alliance Partner.

If you have any questions or comments you can contact
Peter at:
Fernwood Consulting Group Inc.,
288 Laird Dr.,
Toronto ON M4G 3X5
Canada

Voice: (416)429-5705
e-mail: peter@fernwood.ca

LISTINGS

Listing 1
Option Explicit ' always set option explicit
Dim swsSAS As SAS.Workspace
Dim rsSAS As New ADODB.Recordset
Dim swmWM As New
SASWorkspaceManager.WorkspaceManager

Public Sub test()
Dim cnnIOM As New ADODB.Connection
Dim xmlInfo As String

' Create a local SAS workspace.
 Set swsSAS =
swmWM.Workspaces.CreateWorkspaceByServer("",
VisibilityProcess, Nothing, "", "", xmlInfo)

' Open a connection to the workspace
 cnnIOM.Open "Provider=sas.iomprovider.1; SAS
Workspace ID=" & swsSAS.UniqueIdentifier

' Associate the Recordset object with the SAS data set.
 rsSAS.Open "sashelp.shoes", cnnIOM,
adOpenDynamic, adLockPessimistic,
ADODB.adCmdTableDirect
 If Not (rsSAS.BOF And rsSAS.EOF) Then
 rsSAS.MoveFirst
 Do While Not rsSAS.EOF
 Debug.Print rsSAS!region, rsSAS!Product,
rsSAS!subsidiary, rsSAS!stores, rsSAS!sales,
rsSAS!inventory, rsSAS!returns
 rsSAS.MoveNext
 Loop
 End If
 rsSAS.Close
 Set rsSAS = Nothing
cnnIOM.Close
 Set cnnIOM = Nothing
 SwmWM.Workspaces.RemoveWorkspaceByUUID
swsSAS.UniqueIdentifier
swsSAS.Close
 Set swsSAS = Nothing
 Set swmWM = Nothing

End Sub

Listing 2
Option Explicit ' always set option explicit
Dim swsSAS As SAS.Workspace
Dim rsSAS As New ADODB.Recordset
Dim swmWM As New
SASWorkspaceManager.WorkspaceManager

Public Sub test()
Dim cnnIOM As New ADODB.Connection
Dim xmlInfo As String
Dim fld As Field

' Create a local SAS workspace.
 Set swsSAS =
swmWM.Workspaces.CreateWorkspaceByServer("",
VisibilityProcess, Nothing, "", "", xmlInfo)

' Open a connection to the workspace
cnnIOM.Open "Provider=sas.iomprovider.1; SAS
Workspace ID=" & swsSAS.UniqueIdentifier

' Associate the Recordset object with the SAS data set.
 rsSAS.Open "sashelp.shoes", cnnIOM,
adOpenDynamic, adLockPessimistic,
ADODB.adCmdTableDirect

 For Each fld In rsSAS.Fields
 Debug.Print fld.Name, fld.Type
 Next

 rsSAS.Close
 Set rsSAS = Nothing
cnnIOM.Close
 Set cnnIOM = Nothing
 SwmWM.Workspaces.RemoveWorkspaceByUUID
swsSAS.UniqueIdentifier
SwsSAS.Close
 Set swsSAS = Nothing
 Set swmWM = Nothing
End Sub

Listing 3
Option Explicit ' always set option explicit

Dim swsSAS As SAS.Workspace
Dim rsSAS As New ADODB.Recordset
Dim swmWM As New
SASWorkspaceManager.WorkspaceManager

Public Sub test()
Dim cnnIOM As New ADODB.Connection
Dim xmlInfo As String
Dim count As Integer
Dim fld As Field
Dim row As Long

' Create a local SAS workspace.
 Set swsSAS =
swmWM.Workspaces.CreateWorkspaceByServer("",
VisibilityProcess, Nothing, "", "", xmlInfo)

' Open a connection to the workspace

 6

cnnIOM.Open "Provider=sas.iomprovider.1; SAS
Workspace ID=" & swsSAS.UniqueIdentifier

' Associate the Recordset object with the SAS data set.
 rsSAS.Open "sashelp.shoes", cnnIOM,
adOpenDynamic, adLockPessimistic,
ADODB.adCmdTableDirect

' SELECT the first sheet and freeze the panes on the 2nd
line
 Worksheets("sheet1").Activate
 Range("A2").Select
 ActiveWindow.FreezePanes = True
 If Not (rsSAS.BOF And rsSAS.EOF) Then
 Worksheets("sheet1").Activate
 Range("A1").Select
 For Each fld In rsSAS.Fields
 ActiveCell.Value = fld.Name
 ActiveCell.Font.Bold = True
 With ActiveCell.Borders(xlBottom)
 .LineStyle = xlContinuous
 .Weight = xlThin
 End With

 If fld.Type = adWChar Then
 Columns(ActiveCell.Column).ColumnWidth =
fld.DefinedSize + 2
 Else
 Columns(ActiveCell.Column).ColumnWidth = 12
 End If
 col = col + 1
 ActiveCell.Next.Select
 Next
 rsSAS.MoveFirst
 row = 2
 Do While Not rsSAS.EOF
 ActiveSheet.Cells(row, 1).Select
 For Each fld In rsSAS.Fields
 ActiveCell.Value = fld.Value
 ActiveCell.Next.Select
 Next
 row = row + 1
 RsSAS.MoveNext
 Loop
 Range("A2").Select

 End If

 RsSAS.Close
 Set rsSAS = Nothing
 CnnIOM.Close
 Set cnnIOM = Nothing
 SwmWM.Workspaces.RemoveWorkspaceByUUID
swsSAS.UniqueIdentifier
 SwsSAS.Close
 Set swsSAS = Nothing
 Set swmWM = Nothing
End Sub

Listing 4
Option Explicit ' always set option explict
Dim swsSAS As SAS.Workspace

Dim rsSAS As New ADODB.Recordset
Dim swmWM As New
SASWorkspaceManager.WorkspaceManager

Public Sub test()
Dim cnnIOM As New ADODB.Connection
Dim xmlInfo As String

 ' Create a local SAS workspace.
Set swsSAS =
swmWM.Workspaces.CreateWorkspaceByServer("",
VisibilityProcess, Nothing, "", "", xmlInfo)

 ' Use LanguageService
swsSAS.LanguageService.Submit "data a; do customer=1
to 10;quantity=customer*customer;
pizza='Pepperoni';output;end;run;"

' Open a connection to the workspace
cnnIOM.Open "Provider=sas.iomprovider.1; SAS
Workspace ID=" & swsSAS.UniqueIdentifier

' Associate the Recordset object with the SAS data set.
rsSAS.Open "work.a", cnnIOM, adOpenDynamic,
adLockPessimistic, ADODB.adCmdTableDirect
If Not (rsSAS.BOF And rsSAS.EOF) Then
 rsSAS.MoveFirst
 Do While Not rsSAS.EOF
 Debug.Print rsSAS!CUSTOMER, rsSAS!QUANTITY,
rsSAS!PIZZA, rsSAS!ORDERDATE
 rsSAS.MoveNext
 Loop
End If
rsSAS.Close
Set rsSAS = Nothing
cnnIOM.Close
Set cnnIOM = Nothing
swmWM.Workspaces.RemoveWorkspaceByUUID
swsSAS.UniqueIdentifier
swsSAS.Close
Set swsSAS = Nothing
Set swmWM = Nothing
End Sub

Listing 5
Option Explicit ' always set option explict
Dim swsSAS As SAS.Workspace
Dim rsSAS As New ADODB.Recordset
Dim swmWM As New
SASWorkspaceManager.WorkspaceManager

Public Sub test()
Dim cnnIOM As New ADODB.Connection
Dim xmlInfo As String
Dim count As Long
Dim libref As SAS.libref
Dim fld As Field

' Create a local SAS workspace.
 Set swsSAS =
swmWM.Workspaces.CreateWorkspaceByServer("",
VisibilityProcess, Nothing, "", "", xmlInfo)
 Set libref = swsSAS.DataService.AssignLibref("card", "",
"d:\cardiac", "")

 7

 swsSAS.LanguageService.Submit "data a; set
card.revup;run;"

' Open a connection to the workspace
 cnnIOM.Open "Provider=sas.iomprovider.1; SAS
Workspace ID=" & swsSAS.UniqueIdentifier

' Associate the Recordset object with the SAS data set.
 rsSAS.Open "work.a", cnnIOM, adOpenDynamic,
adLockPessimistic, ADODB.adCmdTableDirect
 If Not (rsSAS.BOF And rsSAS.EOF) Then
 For Each fld In rsSAS.Fields
 Debug.Print fld.Name
 Next

 rsSAS.MoveFirst
 Do While Not rsSAS.EOF
 ' Debug.Print rsSAS!CUSTOMER,
rsSAS!QUANTITY, rsSAS!PIZZA, rsSAS!ORDERDATE
 rsSAS.MoveNext
 Loop
 End If
 rsSAS.Close
 Set rsSAS = Nothing

 swsSAS.DataService.DeassignLibref "card"
 swmWM.Workspaces.RemoveWorkspaceByUUID
swsSAS.UniqueIdentifier
 swsSAS.Close
 Set swsSAS = Nothing
 Set swmWM = Nothing
End Sub

